Noise Characterization of Quantum Amplifiers

Nathan Earnest
Mentor: Yi Yin
PI: John Martinis
August 19th, 2010
Quantum Information Lab

• Superposition
• Classical bit
• Quantum bits (Qubits)
 – Very powerful computers
 – Quantum mechanics is real!
• Quantum -> small signal
• Use amplifier to increase signal
 – Is amp noise larger than signal?
Noise Measurement

• Noise is undesired signal from electronics.
• Difficult to precisely measure low noise values of amplifiers
• Current Methods
 – Y-factor method
 – Hot cold method \{Complicated\}
• New method
 – Shot Noise Tunnel Junction
Shot Noise Tunnel Junction

“The Source”

Bias Voltage

Bias Tee

LNA

Spectrum Analyzer

AFM image of SNTJ chip

SNTJ container
How to extract Amp Noise Temp

\[P = k_b B T_n \]

\[T_{\text{sys}} = G \left[T_n + \frac{eV}{2k_b} \coth \left(\frac{eV}{2k_b T} \right) \right] \]

- \(T_{\text{sys}} \) is the system noise temp
- \(M \) is the ratio of values 1 and 2
- \(T \) is the Johnson noise of the SNT
- \(T_n \) is amplifier noise

\[T_n = \frac{MT - \frac{eV}{2k_b} \coth \left(\frac{eV}{2k_b T} \right)}{1 - M} \]

Bias Voltage
Equipment

• Agilent Spectrum Analyzer
Source Output

Curve matches theory
Miteq Amplifier Noise

\[P = k_b BT_n \]

\[NF = 10 \log \left(1 + \frac{T_n}{T_{\text{measurement}}} \right) \]
Conclusions

• An easy method for noise characterization
• Better understanding of noise from amplifiers
 – Easy way to test new amplifiers!
• Quantum Info in grad school!
Thank You!

• Thanks to Yi Yin, Professor John Martinis and the rest of the Martinis group. It has been a very enjoyable and educational summer.
• Thanks to Arica, Matt, and UCLEADS for the guidance and paying for me to work in the lab.
• Thanks to NIST for providing the Source, making my summer’s research possible.