Mating System Evolution:
Correlations between Seed Set and Physiological rates

By: Anthony Linarez
Principal Investigator: Susan J. Mazer
Post Doctorate Mentor: Leah Dudley
Department of Ecology, Evolution & Marine Biology
University of California, Santa Barbara
Mating System

- Outcrossing
 - Vector needed
 - Great genetic diversity
 - Ability to adapt

- Self-fertilization
 - No vector needed
 - Low genetic diversity
 - Inability to adapt
 - Extinction
Hypotheses

Selfing evolved from outcrossing species
 • Reproductive assurance hypothesis
 • Drought avoidance hypothesis

Why does Selfing persist?
 • Counterintuitive
 • Long-term problems

Question:
Is fitness correlated with drought avoidant traits?
When Selfers Evolve

If trends exist then selfers will have evolved from outcrossers on the high fitness spectrum.
Drought Avoidance

<table>
<thead>
<tr>
<th>Photosynthesis</th>
<th>Transpiration</th>
<th>Water Use Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Gain</td>
<td>Water Loss</td>
<td>Carbon Gain / Water Loss</td>
</tr>
<tr>
<td>Higher rates Positively correlated with fitness</td>
<td>Higher Rates Positively correlated with fitness</td>
<td>?</td>
</tr>
</tbody>
</table>
Seed Set

Definition: A measure of plant fitness. Corresponds to the actual number of mature seeds compared to seed potential.

How you measure:

Percentage: \[ext{_____Mature seeds} \]

Mature seeds + aborted ovules
Study Site: Sawmill

- *Clarkia xantiana* ssp *xantiana*
- Sympatric with selfing sister taxon: *xantiana* ssp *parviflora*
- Seasonal Temperatures
- Extreme edge of habitat
- Hot and dry region
Project Goals

• Correlating physiological rates with fitness
• Looking for general patterns in outcrossing species

What will be done in lab:
• Measure Seed set in plants collected in field
• Correct physiological data taken in the field using leaf area
• Correlate physiological rates to seed set
Experimental Methods: Physiological rates

- An infrared gas exchange analyzer was used to measure:
 - Photosynthesis
 - Transpiration
 - Measures the CO₂ taken in and H₂O given off

- Collected measured leaves
 - Measure area of leaves analyzed in IRGA

Infrared gas analyzer
Experiment Methods: Seed set

- In the Field:
 - Glued fruits shut with silicon
 - Collected plants after all fruits matured

- In the Lab:
 - Separate fruits from stem
 - Open fruits
 - Separate mature seeds from aborted ovules
 - Count mature seed and aborted ovules

![Images of mature seeds, aborted ovules, and underdeveloped ovules.]
Results: Photosynthesis

Photosynthetic Rate (umol CO₂ m⁻² s⁻¹)

Seed Set

y = 0.82 - 0.0016x

R² = 0.03

P = 0.3
Results: Transpiration

\[y = 0.67 - 0.02x \]

\[R^2 = 0.018 \]

\[P = 0.42 \]
Results: Water Use Efficiency

\[y = 0.77 + 0.0006x \]

\[R^2 = 0.000008 \]

\[P = 0.98 \]
What patterns are present between outcrossing species?
- There is no correlation between seed set and physiology
 - Only one population of a data
 - Preflowering vs. Flowering

The Next Step:
- Analyze more data from different populations and species
- Account for flowering stage
- Take out other effects, such as biomass.
Acknowledgements

• Susan Mazer
• Leah Dudley
• Alisa Hove
• Ofelia Aguirre
• Eric Pressly

• NSF
• CNSI
• UCSB
• UC Leads